Compact learning for multi-label classification
نویسندگان
چکیده
Multi-label classification (MLC) studies the problem where each instance is associated with multiple relevant labels, which leads to exponential growth of output space. It confronts great challenge for exploration latent label relationship and intrinsic correlation between feature spaces. MLC gave rise a framework named compression (LC) obtain compact space efficient learning. Nevertheless, most existing LC methods failed consider influence or misguided by original problematic features, may result in performance degradation instead. In this paper, we present learning (CL) embed features labels simultaneously mutual guidance. The proposal versatile concept that does not rigidly adhere some specific embedding methods, independent subsequent process. Following its spirit, simple yet effective implementation called multi-label (CMLL) proposed learn low-dimensional representation both CMLL maximizes dependence embedded spaces minimizes loss recovery concurrently. Theoretically, provide general analysis different methods. Practically, conduct extensive experiments validate effectiveness method.
منابع مشابه
Extreme Learning Machine for Multi-Label Classification
Xia Sun 1,*, Jingting Xu 1, Changmeng Jiang 1, Jun Feng 1, Su-Shing Chen 2 and Feijuan He 3 1 School of Information Science and Technology, Northwest University, Xi’an 710069, China; [email protected] (J.X.); [email protected] (C.J.); [email protected] (J.F.) 2 Computer Information Science and Engineering, University of Florida, Gainesville, FL 32608, USA; [email protected] 3 Department o...
متن کاملSemi-supervised Learning for Multi-label Classification
In this report we consider the semi-supervised learning problem for multi-label image classification, aiming at effectively taking advantage of both labeled and unlabeled training data in the training process. In particular, we implement and analyze various semi-supervised learning approaches including a support vector machine (SVM) method facilitated by principal component analysis (PCA), and ...
متن کاملDeep learning for multi-label scene classification
Scene classification is an important topic in computer vision. For similar weather conditions, there are some obstacles for extracting features from outdoor images. In this thesis, I present a novel approach to classify cloudy and sunny weather images. Inspired by recent study of a deep convolutional neural network and the spatial pyramid matching, I generate a model based on the ImageNet datas...
متن کاملLearning Distance Metrics for Multi-Label Classification
Distance metric learning is a well studied problem in the field of machine learning, where it is typically used to improve the accuracy of instance based learning techniques. In this paper we propose a distance metric learning algorithm that is specialised for multi-label classification tasks, rather than the multiclass setting considered by most work in this area. The method trains an embedder...
متن کاملDeep Learning for Multi-label Classification
In multi-label classification, the main focus has been to develop ways of learning the underlying dependencies between labels, and to take advantage of this at classification time. Developing better feature-space representations has been predominantly employed to reduce complexity, e.g., by eliminating non-helpful feature attributes from the input space prior to (or during) training. This is an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2021
ISSN: ['1873-5142', '0031-3203']
DOI: https://doi.org/10.1016/j.patcog.2021.107833